2018 Value Electronics TV Shootout

Out of the Box vs. Professional Calibration and the Comparison of DeltaE 2000 & Delta ICtCp

John Reformato
Calibrator ISF Level-3
9/23/2018

Presentation Goals

- > Define calibration and its benefits
- ➤ How do we measure calibration accuracy?
- ➤ What is color difference and how is it measured?
- ➤ DeltaE 2000 vs Delta ICtCp
- >Typical out of the box calibration scans
- Comparisons of DeltaE 2000 and Delta ICtCP measurements
- > Typical improvements with proper calibration

What is Calibration?

- >Calibration is matching a device to a standard
 - White Point
 - D65 x=.313 y=.329 or Custom White Point
 - Gamma
 - 2.2, 2.4, BT1886 for SDR
 - Light output curve based on CRT physics
 - Electro Optical Transfer Function (EOTF) HDR & Dolby Vision
 - SMPTE ST2084 defines the process by which digital code words are converted into visible light
 - Color
 - Rec.709, DCI/P3, REC.2020

What are the Benefits of Calibration?

- Achieving the most accurate viewing experience so that all colors are the same across all platforms from content creation, to production, to consumer displays
 - Full picture details in the darkest and brightest parts of all scenes
 - Eliminating or minimizing Crushing of Blacks and Clipping of Whites and picture Artifacts (Distortions)
 - Accurate production of the full range of colors without exaggeration

How Do We Measure Calibration Accuracy?

- ➤ Perceptual Color Difference Metrics
 - Predict color differences as closely as possible to the way humans see them.
- >> Just Noticeable Difference
 - Threshold where humans can perceive a difference between two colors and where two colors appear identical.

Color Difference

- >Measure of change in visual perception of two given colors
 - How the human eye perceives the difference between two colors
- **➤**Color Difference Metrics
 - DeltaE 2000 (CIE)
 - Delta ICtCp (created by Dolby Labs)
 - Designed to match how humans see color
 - Based on mathematical formulas to compensate for the human eye's sensitivity to some areas of color and less sensitivity to others
 - Has to be repeatable and user independent

DeltaE 2000 vs. Delta ICtCp

➤DeltaE 2000

- Commonly used Industry Standard
- Formula assumes the human visual system is adapted to white, so you see smaller errors and more inaccurate measurements near black
- Inaccuracies with HDR and WCG displays because data set does not cover this expanded color range.

DeltaE 2000 vs. Delta ICtCp, continued

➤ Delta ICtCp

- Formula assumes unlimited adaption states so the human visual system is adapted to each color for the patch you are measuring
- Predicts gamma and grayscale errors more accurately at the low end (closest to black) and at the high end (closest to white)
- Designed for HDR and WCG displays
- Works for SDR displays as well

Calibration Accuracy Considerations

- ➤It is important to consider how well a metric adheres to human vision across a wide range of colors and luminance levels
- Some metrics perform accurately for certain colors and poorly for others
- ➤ Depending on the metric used, calibrated displays could appear <u>not</u> to match visually even though their color difference values agree
 - DeltaE 2000 may significantly over or under predict color differences
 - One display's blue may trend toward red and another display's toward green making the sets look perceptually different

ICtCp vs. Delta ICtCp

- >ICtCp is an encoding space similar to YCbCr
- ➤ Delta ICtCp is a Color Difference Metric

ICtCp New Color Encoding Model - Reference

>ICtCp

- A color representation model designed for HDR and WCG displays which challenges existing image and video data processing algorithms such as YCbCr in terms of compression and accuracy
 - New non-linear encoding curves, EOTF
 - New color primaries, more saturated colors
 - Increased bit depth

ICtCp New Color Encoding Model - Reference

- >ICtCp, continued
 - More perceptually uniform color representation that is based on the human visual system by decorrelating Saturation, Hue and Intensity
 - I Intensity: Black/White intensity
 - Ct- Tritan: Blue-Yellow axis of human vision
 - Cp- Protan: Red-Green axis of human vision
 - Ct/Cp in ICtCp like Cb/CR in EOTF encoded Y'C'bC'r are the color difference channels
 - Defined from Rec. 2100
 - Proposed for ATSC 3.0; Used by Netflix DV content

ICtCp vs. YCbCr - Reference

- ➤ICtCP can replace YCbCr
 - Improved chroma subsampling and gamut mapping
 - Less distortions than YCbCr for HDR and WCG; less color "leakage" into luminance channel
 - Better overall image quality and perceptual uniformity
 - Better compression requires lower bit rates

^ **(= 1**)

O Type here to search

References

- How Close Is Close Enough? Specifying Color Tolerances For HDR AND WCG Displays
 - Jaclyn A. Pytlarz, Elizabeth G. Pieri
 - Dolby Laboratories Inc., USA
- 2. ICtCp White Paper
 - Dolby Laboratories
- 3. Dolby Demonstrates ICtCp Color Model at SMPTE 2017
 - Scott Wilkinson, AVS, October 31, 2017
- 4. Hitting the Mark A New Color Difference Metric
 - Jaclyn Pytlarz, SMPTE 2017